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CENTRAL LOCALIZATION AND 
GELFAND-KIRILLOV DIMENSION 

BY 

S. P. SMITH 

ABSTRACT 

Let R be a factor ring of the enveloping algebra of a finite dimensional Lie 
algebra over a field k. If the centre of R, Z, consists of non-zero divisors in R, 
the ring Rz obtained by localizing at the non-zero elements of Z becomes a 
finitely generated algebra over the field K which arises as the field of fractions 
of Z. The Gelfand-Kirillov dimension of an R-module M is denoted d(M). In 
this paper it is shown that if Rz @R M~ 0 then d(M) >= 
d(Rz @R M) + tr. degk Z, where d(Rz @ M) is the Gelfand-Kirillov dimension 
of Rz @ M viewed as an Rz-module and Rz is viewed as a finitely generated 
K-algebra (not as a k-algebra). The result is primarily of a technical nature. 

I. Introduct ion 

1.1. R will be a finitely genera ted  algebra over  a field k of  characterist ic zero. 

Let  E be a central  subring of R containing k with the proper ty  that  every 

e lement  of E is regular  in R. Let  RE denote  the localization of R at E (that is, 

RE is the ring obta ined  by inverting the e lements  of E) .  The  ring RE will not  

general ly be finitely genera ted  as an algebra over  k ,  but  will be a finitely 

genera ted  algebra over  the field K which arises as the quot ient  field of the 

integral domain  E. Such a si tuation is typical if R is a pr ime factor  ring of an 

enveloping algebra of a finite dimensional  Lie algebra, or  a prime factor  ring of 

the g roup  algebra of a polycyclic-by-finite group.  

If M is an R - m o d u l e  it is natural  to look at the Gelfand-Kir i l lov  dimension of 

M (denoted d(M)) over  the field k (that is, the vector  spaces in the definition of 

d(M) are k-vec tor  spaces); we shall write dR(M) for the Gelfand-Kir i l lov  

dimension of the R - m o d u l e  M, viewing R as an algebra over  k. Put S = RE ; if N 

is an S -modu le  it is natural  to look at d (N)  by viewing N as an S -modu le  and S 

as an algebra over  K ;  we shall write ds (N)  for the Gel fand-Kir i l lov  dimension 

of the S -modu le  N, viewing S as an algebra over  K (not as an algebra over  k). 
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So, for example, if R = k[X, Y], the commutative polynomial ring in two 

indeterminates, and E = k[X], then S = k (X) [Y]  and dR (R) = 2 while ds (S) = 

1. 

We determine the relationship between dR and ds. More precisely, if M is a 

finitely generated R-module such that S (~R M E  0 we look at the relationship 

between dR (M) and ds (S @R M)  (see Theorem 2.7 for a precise statement of the 

result). 

The result is primarily of a technical nature. We give two examples towards 

the end of the paper to indicate how Theorem 2.7 may be applied. In [10], the 

example given in w is used in a key lemma. 

1.2. If B is a finitely generated algebra over a field k, generated by a finite 

dimensional subspace V containing k, and M is a B-module generated by a 

finite dimensional subspace Mo, then the Gelfand-Kirillov dimension of M is 

defined to be 

log dim V"Mo 
dB (M) = lira sup log n 

The reader is referred to [2], [5], [9] for details. 

This dimension is most useful when applied to those algebras B having the 

property that the associated graded algebra (determined by the filtration coming 

from the powers of V viz. k = V ~ C V ~ C V 2 C �9 �9 �9 ) is commutative. Such B are 

called almost commutative algebras, and are precisely the factor rings of 

enveloping algebras. We include in our definition of almost commutative 

algebras the requirement that they are finitely generated. 

2. The localization theorem 

2.1. We begin with the assumption that E is generated as an algebra over k by 

the algebraically independent elements z~, . . . ,  zn ; that is E = k[z~, . . . ,  zn], the 

commutative polynomial ring in n indeterminates. This assumption applies 

through to w After dealing with this special case, the general case will be dealt 

with in w 

2.2. The ideas behind the following theorem are well known, see e.g. [8]. 

THEOREM. Let Xl, ~ ' ",Xn be commuting indeterminates and let T be the ring 

R @k k(x~, . , . ,  xn) where k ( x~ , " . ,  xn) is the rational function field. Let J be the 

left ideal of T generated by the elements xi - zi = 1 Q x, - z~ Q 1 [or i = 1,. �9 n. 

Then T/J  ~- S = RE via the map 
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~b ( ~ a iQp~(x , , "  ",x.)) = ~ a,pi(zl," ",z,) 

where t- denotes the image of t ~ T in T/J. Moreover, R embeds in T/J  through 

the embedding R --~ T defined by r --~ r (~ 1, and ch (R ) is the natural copy of R 
which lies in S. Finally, ~b(k(x, , . . . ,  x , ) )=  K, the quotient field of E. 

PROOF. This is straightforward. The only point to be watched is that one 

really does require the z~ ,"  ", z, to be algebraically independent for ~ to be 

well-defined as a map: T / J ~ R .  

The idea behind the proof of the localization theorem is to study S by first 

obtaining information about T and then making use of the isomorphism 

T/J ~- S. 

2.3. We recall the definition of an r-sequence given in [6]. 

DEFINITION. Let B be an arbitrary ring, and M a left B-module. A sequence 

of endomorphisms a ~ , . . . , a ,  in EndBM in called a regular endomorphism 

sequence on M, for brevity an r-sequence on M, if it satisfies the following 

conditions; 

(i) a ~ M + . . . + a , M ~ M ;  

(ii) a k ( a l M + " ' + a k - ~ M )  C a ~ M + " ' + a k - l M  for k > l ;  

(iii) a~-'(0) = 0; a~(a~M+ . . .  + ak_lM)C a ~ M + . . .  "kOtk-lM for k > 1. 

2.4. PROPOSITION. Let B be an almost commutative k-algebra, M a finitely 

generated B-module, a~, . . ., a, an r-sequence on M. Put f'l = 
M/(a~M + . . .  + a,M). Then dB (M) >-_ dB (f/l) + t. 

REMARK. The idea for this Proposition comes from [6, theorem 2.6] where 

the "same" result is proved with Krull dimension in place of Gelfand-Kirillov 

dimension. The "same" proof will work in both cases and so is omitted here. The 

only point to be watched is that one needs to use the fact that if M is a finitely 

generated B-module and dB(M)= d, then any chain of submodules M = 

M0D M1 D . . .  with d~(M~/M~+~)=d for each i, must terminate after only 

finitely many terms (see e.g. [9, corollary 2.2]). At present, this result is only 

known to hold when B is an almost commutative algebra, and it is for this reason 

that the proposition is restricted to such B. If one could extend this result to a 

larger class of rings then the main theorem of the present paper could be 

extended accordingly. 

2.5. PROPOSITION. Suppose I is a left ideal of R with I N E = O. Let p~ be the 

image of x~ - zi in Endr(T/TI) .  Then p~,. . ., p, is an r-sequence on T /TI  (viewed 

as a T-module). 
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PROOF. Use [7, lemma 2.6] with appropriate changes of notation. 

2.6. PROPOSITION. Suppose I is a left ideal of an almost commutative k- 

algebra R with I A E = O. Then 

dR (R/I )  >= ds (S/SI) + n. 

PROOF. After Theorem 2.2, we have S/SI  ~-T/(T!  +J) as S-modules, so 

ds (S/SI)  = dT, (T/ (TI  + J)) where T/J  is viewed as a finitely generated algebra 

over k(x , , . . . , x , )=dp- t (K) .  Of course, d T , ( T / ( T I + J ) ) = d T ( T / ( T I + J ) ) .  
However, putting M = T/T I  and using the r-sequence pl," �9 ", pn of the previous 

proposition, p1M + ' "  + p,M = (TI + J)/TI. So after Proposition 2.4 (with B = 

T), dr (T/TI)  > dr (T /TI  + J) + n ; whence dT (T/TI) >= ds (S/SI) + n. 
Notice that T / T I  ~- (R/I )@k k(xl, .  . ., x,)  as vector spaces over k(xl , .  . ., x.). 

This isomorphism will restrict to an isomorphism on the filtration subspaces of 

T / T I  and R / I  that are used to determine the Gelfand-Kirillov dimension of 

each of these modules (because a subset {v~} of R / I  is linearly independent over 

k if and only if the images of these elements in T/T I  are linearly independent 

over k(x~, . . . ,x , )) .  Thus dT(T/TI )= dR (R/I) .  This completes the proof. 

2.7. We now drop the assumption that E is a polynomial ring. Being an 

almost commutative algebra, R has finite Gelfand-Kirillov dimension, hence so 

does E. This in turn implies that K, the quotient field of E, has finite 

transcendence degree over k. Consequently we can find algebraically indepen- 

dent elements z~ , . . . , z ,  of E with n = t r .  degkK=tr ,  degkE. Put F =  

k[z,,.. ", z , ] .  

Let M be a finitely generated R-module such that S @R M ~  0 where, as 

before, S = R~. There is a left ideal I of R with the properties: 

(i) R / I  is isomorphic to a submodule of M; 

(ii) I A E = 0 ;  
(iii) ds (S QR M) = ds (S @R (R/I)). 
Put A = RF. It is clear from (ii) that A QR (R/I )  ~ 0 and so by Proposition 

2.6, dR (M) >= dR (R/ I )  >= da ( A / A I )  + n. Notice that S @R (R/ I )  

S Q,t (A /AI ) ,  and S may be considered as a localization of A at its central 

subring generated by E and k(z~, . . . ,  zn). 

THEOREM. Let R be an almost commutative k-algebra. Let tr. degk E = n. I[ 

M is a finitely generated R-module such that S @R M ~  0, then 

dR (M) >- ds (S ~ M) + n. 
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PROOF. On the basis of the notation introduced above, ds(S @ R M ) =  

ds (S @A (A/AI)) and so to prove the Theorem it is sufficient to show that 

ds (S @A (A /AI)) <= dA (A /AI). 
Let No be a finite dimensional k(z~,..., z~)-subspace of N = A/AI, which 

generates N as an A-module. Let K, denote the quotient field of E. Then 

K @kt~,,..z~) No is a finite dimensional K-subspace of S @A N generating S @A N 

as an S-module. Suppose A = I,.J:=o V n where V is a finite dimensional 

k(zl," ", z,)-subspace (containing k(zl,..., z,)). Then 

dim (K ~) V n) (K @ No) = dim (K @ V"No) <-_ dim V"No 
k(zl,'",zn) 

for all integers n, and so ds (S @A N) < d,~ (N). 

2.8. The present approach does not make it easy to decide whether one 

actually obtains equality in the Theorem. Unfortunately we are unable to offer 

an example to show that the inequality may be strict. 

It may be possible to extend Theorem 2.7 to apply to rings R which arise as 

factor rings of group algebras of polycyclic-by-finite groups. In such cases the 

inequality may be strict. For example, take R = M  = K [ G ]  where G = 

(x,y,z [xyx-ly -1= z) and take E = k[z,z-~]; then dR(M)= 4 and ds(S)=2. 

3. Applications 

3.1. Let R b e  a prime factor ring of the enveloping algebra, U(g), of a finite 

dimensional nilpotent Lie algebra g. Further assume that k is algebraically 
closed. Let E be the centre of R and K the quotient field of E. The structure of 

RE is well known [3]. The ring RE is isomorphic to a Weyl algebra Am (K), over 

the field K. The integer m satisfies d(R)= 2m +tr.degkK. Put S = RE. 
If I is a left ideal of R with I fq E = 0 then S QR (R/I)~ 0 and after [1], 

ds(St~R(R/I))>=m. Consequently Theorem 2,7 shows that dR(R/I)>= 
m + tr. degkK. It is a straightforward consequence of this that if M is an 

R-module and dR (M) < �89 (R) + tr. degk K) then ann(M)E ~ 0. In other words, 

one concludes that a faithful R-module must have Gelfand-Kirillov dimension 

at least �89 (R) + tr. degk K). 

3.2. In [4] a generalization of Quillen's Lemma is proved: if R is an almost 

commutative k-algebra, and M a finitely generated R-module then 

c (End~ M) _-< K-dim M, where c (EndR M) denotes the maximal transcendence 

degree of a commutative subalgebra of EndRM, and K-dimM is the Krull 
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dimension of M. In particular, knowing the Krull dimension of M enables one to 

bound c(EndRM). However, this bound is not always the best possible. For 

example, if a is the 3-dimensional Heisenberg Lie algebra with basis x, y, z and 

relations [x, y] = z, z central, then K-dim U(a) = 3 but c(End U(a)) = c(U(a)) 

= 2 .  

We illustrate how it is possible by localizing and applying Theorem 2.7 to 

obtain a better bound for c(EndR M) in some situations. 

3.3. Suppose R and E are as in 3.1 and use the notation there. Let M be a left 

R-module with the property that every non-zero submodule N of M satisfies 

S @R N ~  0. We shall obtain a bound for c(EndR M) which will usually be an 

improvement on the bound K-dim M given by the generalization of Quillen's 

Lemma. 

The condition on M ensures that the natural map EndR M--~ Ends (S @R M) 

is an embedding. Let C = k[01,. �9 0,] be a commutative subalgebra of EndnM 

such that 

c(EndR M) = d(C) = tr. degk C = r. 

Consider C as a subring of Ends (S @R M). We may also consider K as a subring 

of Ends (S @R M). Let K[C] denote the (commutative) subring of 

Ends (S @R M) generated by K and C. The generalization of Quillen's Lemma 

ensures that tr. degKK[C] _-< K-dims (S @R M). 

Now S ~A,,(K) and by [9, lemma 2.3], we have K-dims (S @R M) <= 

ds (S @R M) - m. Hence, applying Theorem 2.7, tr. degK K[C] <= 
dR (M) - tr. degk K - m. 

Finally, we may assume without loss of generality that C contained a 

transcendence basis for K to begin with; this is because E may be considered as 

a central subring of EndR M, and E contains a transcendence basis for K. Once 

this assumption is made it is clear that tr.degk C = tr. deg~K[C] + tr.degkK. 

Thus c (EndR M) <- dr (M) - m. 

3.4. The restriction on M in 3.3 is fairly natural. For any module M let t(M) 
denote the set of elements of M annihilated by some non-zero element of E;  

t(M) is in fact a submodule of M, the torsion submodule with respect to E, and 

M/t(M) satisfies the restriction in 3.3. 

A typical example would be if R = U(a), where a is the 3-dimensional 

Heisenberg algebra, and M = R/Rx. The analysis in 3.3 yields c (EndR M)-< 1 

although K-dim M = 2. In fact EndR M = k [O] where 0 is the R-endomorphism 

given by 0( i )=  z. 
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